Neue Regeln der Teamarbeit

Kleine Hitzeschockproteine arbeiten in Teams, sogenannten Oligomeren, die strukturelle Cluster darstellen. Ihre Aufgabe entspricht einem Sicherungssystem. Sie sollen sicherstellen, dass keine für die Zelle negativen Effekte auftreten, wenn Proteine ihre Struktur verlieren. Diese Struktur, der Wissenschaftler spricht auch von Faltung, ändert sich zum Beispiel bei Temperaturschwankungen.
Hartmut Oschkinat und Barth van Rossum vom Leibniz-Institut für Molekulare Pharmakologie (FMP) haben zusammen mit Forschern der Universität von Washington in Seattle (UW) mehrere Methoden kombiniert, um die Struktur eines repräsentativen Clusters des Hitzeschockproteins AlphaB-Kristallin darzustellen. Neben der kernmagnetischen-Resonanzspektroskopie (NMR) arbeiteten sie mit der sogenannten Kleinwinkel-Röntgenbeugung. Die NMR ermöglicht die Messung von Abständen zwischen Atomen, während die Kleinwinkel-Röntgenbeugung die allgemeine Form der Cluster wiedergibt. Das Besondere dabei ist, dass mit NMR Informationen über die Struktur von heterogenen Clustermischungen gewonnen werden konnten, die für die kleinen Hitzeschockproteine charakteristisch sind.
Die Forscher konnten zeigen, dass vor allem Cluster aus 24 einzelnen Proteinen auftreten, die die Form eines kugelförmigen Komplexes bilden, der innen hohl ist. Gleichzeitig konnten sie sehr wichtige Details erkennen, wie die Verbindungen zwischen den einzelnen Teilen des Clusters und die paarweise Anordnung der einzelnen Proteine (Dimer). Jedes einzelne Proteinmolekül weist eine „Sandwich-Struktur“ aus β-Faltblättern auf, die unter Verlängerung der Faltblattstruktur an ein weiteres Molekül binden. Aufgrund der atomaren Auflösung der Struktur konnten die Forscher die Schnittstelle des Dimers darstellen. Außerdem untersuchten sie die strukturellen Konsequenzen von Mutationen, die im menschlichen Körper in einer frühen Phase des grauen Stars auftreten oder zu Herzkrankheiten führen können.
Ziel der strukturellen Untersuchung ist es, die Aktivierung des Hitzeschockproteins zu verstehen. Diese spielt eine Rolle bei Durchblutungsstörungen, wie sie bei Herzinfarkt oder Schlaganfall auftreten. In solchen Fällen sinkt der pH-Wert in Zellen, was sich auf die Dynamik der Proteincluster auswirkt. Hartmut Oschkinat und Barth van Rossum konnten zeigen, dass in diesem Fall der Zusammenhalt des Clusters verringert wird und die Verbindungstellen zwischen einzelnen Proteinen freiliegen. Das ist die Voraussetzung, damit sie ihre Funktionen ausüben können: aus der Form geratene Proteine zu binden und damit die Zelle zu schützen. Zusammen mit Stefan Jehle (FMP) und Ponni Rajagopal (UW) wurden die Experimente bei verschiedenen pH-Werten durchgeführt. Dabei kam es zur überraschenden Schlussfolgerung, dass sich mit dem pH-Wert die Krümmung der Dimere ändert, und damit vermutlich auch die Stabilität der Cluster.
Diese Untersuchung hat weitreichende Konsequenzen für die Strukturbiologie, denn die Forscher konnten zeigen, dass man Strukturinformationen mit hoher Auflösung an relativ großen Proteinsystemen erhalten kann. Dies eröffnet neue Perspektiven zur Strukturuntersuchung von einer Vielzahl von Systemen, die bislang nicht zugänglich waren, wie zum Beispiel Proteinkomplexe des Zytoskeletts oder Membranproteine.
Das FMP wird diese Methoden im Rahmen seiner Beteiligung an europäischen Infrastrukturnetzwerken (Bio-NMR, INSTRUCT) anderen Forschern zugänglich machen.

Die Kernspinresonanzspektroskopie (NMR) ist eine Methode, mit der die räumliche Struktur von Proteinen bestimmt werden kann. Die Struktur von AlphaB-Kristallin war bislang nur für kleine „Domänen“, einzelne Teile der Aminosäurekette, darstellbar. Mit einer speziellen Technik der NMR-Spektroskopie, bei der die untersuchte Proteinprobe sehr schnell um eine bestimmte Achse in einem Magnetfeld gedreht wird, der sogenannten „Magic-Angle-Spinning-NMR-Spektroskopie“ (MAS-NMR) konnte nun die Struktur des vollständigen Proteins gezeigt werden.

Jehle S, Rajagopal P, Bardiaux B, Markovic S, Kühne R, Stout JR, Higman VA, Klevit RE, van Rossum BJ, Oschkinat H. Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers. Nat Struct Mol Biol. 2010 Sep;17(9):1037-42.

Kontakt
Leibniz-Institut für Molekulare Pharmakologie
Silke Oßwald, Presse- und Öffentlichkeitsarbeit
Tel. (030) 94 793-104
E-Mail: osswald@fmp-berlin.de

Scroll to Top