Molekularer Grenzverkehr – Protein verknüpft wichtigste Schritte der Genexpression

Die LMU-Biologin Dr. Katja Sträßer untersucht, wie diese verschiedenen Schritte miteinander verbunden sind und wie diese Verbindungen die Genexpression effizienter machen. Zusammen mit ihren Mitarbeitern konnte sie nun nachweisen, dass das RNA-bindende Protein Sro9 die Transkription mit der Translation verknüpft. „Das Protein pendelt zwischen dem Zellkern und dem Zytoplasma hin und her“, sagt Sträßer. „Wir vermuten, dass Sro9 schon in der Transkription an das neu synthetisierte mRNA-Molekül bindet und mit diesem aus dem Zellkern exportiert wird, weil es auch für eine effiziente Translation benötigt wird. Sro9 würde damit die auf zellulärer Ebene weit entfernten Schritte der Transkription und Translation funktionell verbinden – und auf diese Weise eine effiziente Genexpression sowie eine Qualitätskontrolle ermöglichen.“ (RNA online, 21. Mai 2010)

Alle lebenden Zellen enthalten im Kern fadenförmige DNA-Moleküle, die aus Tausenden von Genen bestehen. Diese tragen die Bauinformation für Proteine, die Funktionsträger der Zelle. Doch der Weg von der genetischen Information zum Protein ist weit: Zunächst muss in der sogenannten Transkription das betreffende Gen in RNA übersetzt werden, eine der DNA nahe verwandte Nukleinsäure. Dabei entsteht das Botenmolekül mRNA, das die genetische Information aus dem Zellkern trägt, damit sie im Zytoplasma in das entsprechende Protein umgesetzt werden kann. Proteine wiederum sind die wichtigsten Funktionsträger der Zelle mit einer Vielzahl von Aufgaben, etwa als Enzyme und Transportmoleküle.

„Das wiederum macht die Genexpression zu einem der wichtigsten Prozesse allen Lebens“, betont Sträßer. „Bislang aber wurden Transkription und Translation nicht nur räumlich, sondern auch funktionell als weitgehend getrennte Prozesse gesehen.“ Mittlerweile weiß man, dass die mRNA, die bei der Transkription entsteht und in der Translation abgelesen wird, von einer Vielzahl von Proteinen bedeckt ist – die vermutlich auch bei späteren Schritten der Genexpression eine Rolle spielen. Es wird sogar vermutet, dass diese Proteine, etwa über ihre jeweils spezifische Zusammensetzung, auf einer ganz eigenen Ebene zur Regulation der Genexpression beitragen.

Vom Protein Sro9 war bekannt, dass es bei der Transkription, der Translation und der Stabilisierung der mRNA eine Rolle spielt. Sträßer und ihre Mitarbeiter konnten nun zeigen, dass Sro9 zu aktiv transkribierten Genen rekrutiert wird und zwischen dem Zellkern und dem Zytoplasma pendelt. „Nach unserem Modell bindet das Protein an das mRNA-Molekül schon während dessen Synthese, um diesen Vorgang zu unterstützen“, sagt Sträßer. „Mit dem Botenmolekül gelangt Sro9 aus dem Zellkern, um dann auch zur Translation beizutragen. Möglicherweise gehört Sro9 zur wachsenden Gruppe von Proteinen, die einzelne Prozesse der Genexpression im Zellkern mit denen im Zytoplasma verknüpfen. Die Kopplung verschiedener Schritte der Genexpression macht diese wiederum effizient – und ermöglicht eine Qualitätskontrolle.“ (suwe)

Diese Arbeit wurde von dem Exzellenzcluster „Center for Integrated Protein Science Munich“ (CIPSM), dem SFB 646 „Regulatory Networks in Genome Expression and Maintenance“ und einem ERC Starting Grant der EU gefördert.

Publikation:
„Nucleocytoplasmic shuttling of the La-motif containing protein Sro9 might link its nuclear and cytoplasmic functions”,
Susanne Röther, Cornelia Burkert, Katharina M. Brünger, Andreas Mayer, Anja Kieser, and Katja Sträßer
RNA online, 21. Mai 2010
DOI: 10.1261/rna.2089110

Ansprechpartner:
Dr. Katja Sträßer
Genzentrum der LMU
Tel.: 089 / 2180 – 76937
E-Mail: strasser@lmb.uni-muenchen.de
(idw, 05/2010)

Scroll to Top