Mathematisches Modell beschreibt das Transportverhalten von Partikeln durch Bronchialschleim

Die Arbeit, die in enger Kooperation von Physik, Pharmazie und Mathematik entstanden ist, wurde im Biophysical Journal veröffentlicht.

Medikamente ohne Injektion ins Blut einzuschleusen, ist schon seit längerem ein Ziel von Pharmazeuten. Eine mögliche Eintrittspforte von Wirkstoffen in den Körper führt über die Schleimhäute, die unter anderem die Nase und Mundhöhle, den Magen-Darm-Trakt aber auch die Atem- und Lungenwege auskleiden. Sie sind von einem Schleim, auch Mucus genannt, bedeckt: Er bildet eine nicht-zelluläre Barriere für alle von außen eindringenden Partikel. „Der Schleim auf unserer Luftröhre und den oberen Teile der Lunge besitzt eine zähe, gelartige Schwamm- oder Kammerstruktur. Sie verhindert, dass größere Partikel wie Feinstaub oder Krankheitserreger in die Bronchien gelangen“, erklärt Claus-Michael Lehr, Professor für Biopharmazie und Pharmazeutische Technologie der Universität des Saarlandes und Leiter der Abteilung „Wirkstoff-Transport“ am HIPS. Verantwortlich dafür, dass der Schleim seine Schutzfunktion so gut erfüllen kann, ist sein aus Proteinen bestehendes Gelgerüst, in dem größere Nanopartikel beim Übertritt von einer Kammer in die nächste hängenbleiben. (vgl. PNAS-Veröffentlichung von 2012: ).

Damit werden auch Nanoteilchen, die als „Taxi“ oder „Carrier“ Arzneistoffe transportieren, bei ihrem Weg durch die Atemwege ausgebremst. Dennoch bleibt dies eine Option für die Pharmazeuten: „Uns interessiert, wie wir es anstellen können, dass Arzneistoffe den Bronchialschleim trotzdem durchdringen können. Doch dazu müssen wir die Struktur des Schleims noch etwas besser verstehen“, sagt Claus-Michael Lehr. Gemeinsam mit Wissenschaftlern von Saar-Uni und htw saar wurde nun ein weiterer Schritt hin zum besseren Verständnis getan: Die Forscher aus der Physik und der Mathematik haben ein mathematisches Modell entwickelt, das erklärt, wieso der Transport größerer Partikel so stark erschwert ist. „Unser Modell, das in einem Abstraktionsprozess entstanden ist, beschränkt sich auf nur drei Parameter: die Partikelgröße, die Größe der Kammern im Schleim und die Wahrscheinlichkeit der Diffusion von einer Kammer in die nächste“, erläutert der Experimentalphysiker Dr. Thomas John, der in der Arbeitsgruppe von Professor Christian Wagner forscht. Für die aktuelle Publikation hat er mit Mathias Ernst zusammengearbeitet, der als wissenschaftlicher Mitarbeiter am htw-Lehrstuhl von Mathematik-Professor Marco Günther beschäftigt ist und bei Professor Lehr an der Saar-Uni promoviert.

„Unser Modell kann die Ergebnisse bisheriger Experimente anderer Arbeitsgruppen korrekt beschreiben“, sagt Thomas John. Darüber hinaus lässt sich damit beispielsweise vorhersagen, dass nur Kugeln, die kleiner als 30 bis 40 Nanometer sind, den Schleim innerhalt von 15 Minuten durchdringen können. Das aber sei entscheidend, so John, da der Mucus sich alle 15 Minuten völlig neu bilde. Basierend auf dem Modell finden derzeit modifizierte Experimente an der Universität des Saarlandes statt, um die Vorhersagen zu überprüfen. Für mögliche inhalative Medikamente bedeute dieses Ergebnis, dass die Nano-Transportvehikel inklusive ihrer „Fracht“ kleiner als 40 Nanometer sein müssten – zu klein für den Pharmazeuten Claus-Michael Lehr: Für ihn wären Teilchen in der Größenordnung von 100 bis 200 Nanometern ideal. „Aus den mithilfe des neuen Modells gewonnenen Erkenntnissen wollen wir neue Strategien entwickeln, wie Nanocarrier das Gelgerüst des Schleims trotzdem überwinden könnten“, sagt Lehr. Dies könne beispielsweise bedeuten, nicht-kugelförmige Carrier zu verwenden oder Verfahren zu entwickeln, mit denen die „Trennstäbe“ zwischen den Kammern quasi durchschmolzen werden könnten.

Die Studie “A model for transient subdiffusive behavior on the basis of permeable membranes and application to particles diffusing in mucus” ist am 10. Januar 2017 in der Zeitschrift Biophysical Journal erschienen: (DOI: http://dx.doi.org/10.1016/j.bpj.2016.11.900)

Kontakt:
Dr. rer. nat. Thomas John
AG Prof. Dr. Christian Wagner
Telefon: +49 (0)681 302-3944
E-Mail: thomas.john@physik.uni-saarland.de

Prof. Dr. Claus-Michael Lehr
Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS)
Leiter der Abteilung Wirkstoff-Transport
E-Mail: Claus-Michael.Lehr@helmholtz-hzi.de
Tel.: 0681 98806-1000

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681 302-2601) richten.

Scroll to Top